Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.
نویسندگان
چکیده
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the presence of oxygen, power densities of 270+/-10, 350+/-20, and 120+/-10 W/m(3) were recorded from the mini-MFC for glucose, fructose, and ascorbic acid electron donors, respectively, while sucrose and acetate produced no response. The power produced from glucose decreased considerably (<or=100 W/m(3)) if strictly anaerobic conditions were maintained. Based on the previously published proteomic and genomic literature on S. oneidensis, this reduction in power output is most likely due to the differential expression of proteins by these bacteria when grown under oxygen-rich or anoxic conditions. The power densities generated from the mini-MFC exposed to oxygen led to significant changes in current production over time with repeated feedings of these carbon nutrients. This work expands the breadth of potential electron donors for S. oneidensis MFCs and demonstrates the importance of studying microbial anolytes under diverse environmental conditions.
منابع مشابه
Oxygen exposure promotes fuel diversity for <i>Shewanella oneidensis</i> microbial fuel cells
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the prese...
متن کاملSimultaneous Analysis of Physiological and Electrical Output Changes in an Operating Microbial Fuel Cell With <i>Shewanella oneidensis</i>
Changes in metabolism and cellular physiology of facultative anaerobes during oxygen exposure can be substantial, but little is known about how these changes connect with electrical current output from an operating microbial fuel cell (MFC). A high-throughput voltage based screening assay (VBSA) was used to correlate current output from a MFC containing Shewanella oneidensis MR-1 to carbon sour...
متن کاملSimultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis.
Changes in metabolism and cellular physiology of facultative anaerobes during oxygen exposure can be substantial, but little is known about how these changes connect with electrical current output from an operating microbial fuel cell (MFC). A high-throughput voltage based screening assay (VBSA) was used to correlate current output from a MFC containing Shewanella oneidensis MR-1 to carbon sour...
متن کاملGrowth with high planktonic biomass in Shewanella oneidensis fuel cells
Shewanella oneidensis MR-1 grew for over 50 days in microbial fuel cells, incompletely oxidizing lactate to acetate with high recovery of the electrons derived from this reaction as electricity. Electricity was produced with lactate or hydrogen and current was comparable to that of electricigens which completely oxidize organic substrates. However, unlike fuel cells with previously described el...
متن کاملThe utility of Shewanella japonica for microbial fuel cells.
Shewanella-containing microbial fuel cells (MFCs) typically use the fresh water wild-type strain Shewanella oneidensis MR-1 due to its metabolic diversity and facultative oxidant tolerance. However, S. oneidensis MR-1 is not capable of metabolizing polysaccharides for extracellular electron transfer. The applicability of Shewanella japonica (an agar-lytic Shewanella strain) for power applicatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2008